杂志名称:Advanced Functional Materials
影响因子:18.5
文章题目:2D Black Ferroelectric Perovskite Nanocatalysts Enable Defect Modulation-Augmented Piezocatalytic Glioma Therapy
DOI: https://doi.org/10.1002/adfm.202412983
第一作者:Huan Li, Chao Ma, Linqi Wang, Tong Li, Peng Li, Yu Hu, Xinyue Dai, Dejun Wu, Meiqi Chang, Yu Chen, Tao Xu
作者单位:
首都医科大学北京天坛医院
安徽医科大学第二附属医院
上海大学
上海市立中医药医院上海中医药大学
中国海军医科大学长征医院
引用YOBIBIO产品:
U22-001A Cell Counting Kit(CCK-8)试剂盒
U21-259B PBS 缓冲液
U21-265B DMEM高糖培养基
U31-301C Penicillin Streptomycin(双抗100X,青莲霉素混合液)
U11-020A 优级胎牛血清 Superior FBS
文章摘要:
Enhancing the efficacy of glioma treatment poses a significant challenge. Ferroelectric nanomaterials, renowned for their remarkable piezoelectric properties, generate reactive oxygen species (ROS) when exposed to external stimuli or specific environmental conditions. This characteristic positions them as promising platforms for highly effective cancer therapies. In this study, two-dimensional (2D) black Bi4Ti3O12 ferroelectric perovskite nanocatalysts with engineered oxygen vacancies are designed as potent sources of ROS for efficient glioma therapy. The band bending due to ferroelectric polarization and the narrowed bandgap induced by engineered oxygen vacancy defects effectively enhance carrier separation, suppress recombination rates, and markedly increase ROS production. Moreover, mitochondrial dysfunction and activation of the mitogen-activated protein kinase (MAPK) pathways contribute to the favorable anti-tumor effects. In vitro cellular-level assessments and in vivo antineoplastic evaluations unequivocally demonstrate the enhanced cytotoxicity and effective tumor suppression enabled by this piezo-catalytic treatment strategy. This research underscores the role of defect engineering in optimizing the effectiveness of ferroelectric semiconductors for catalytically inducing apoptosis in glioma cells.
提高胶质瘤治疗的疗效是一项重大挑战。铁电纳米材料以其卓越的压电性能而闻名,当暴露于外部刺激或特定环境条件时,会产生活性氧 (ROS)。这一特性使它们成为高效癌症治疗的有前途的平台。在这项研究中,具有工程氧空位的二维 (2D) 黑色 Bi4Ti3O12 铁电钙钛矿纳米催化剂被设计为高效神经胶质瘤治疗的 ROS 的有效来源。铁电极化引起的带弯曲和工程氧空位缺陷引起的带隙变窄,有效地增强了载流子分离,抑制了复合速率,并显着增加了 ROS 的产生。此外,线粒体功能障碍和丝裂原活化蛋白激酶 (MAPK) 途径的激活有助于良好的抗肿瘤作用。体外细胞水平评估和体内抗肿瘤评估明确证明了这种压电催化治疗策略增强的细胞毒性和有效的肿瘤抑制。这项研究强调了缺陷工程在优化铁电半导体催化诱导神经胶质瘤细胞凋亡的有效性方面的作用。